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Abstract

The spectacular heat transfer enhancement revealed experimentally in nano-fluids suspensions is being investigated

theoretically at the macro-scale level aiming at explaining the possible mechanisms that lead to such impressive exper-

imental results. In particular, the possibility that thermal wave effects via hyperbolic heat conduction could have been

the source of the excessively improved effective thermal conductivity of the suspension is shown to provide a viable

explanation although the investigation of alternative possibilities is needed prior to reaching an ultimate conclusion.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat conduction in fluids at the macro-level is very

poor because most affordable fluids have very low ther-

mal conductivity values compared with solids. Crystal-

line solids have thermal conductivity values of 1–3

orders of magnitude larger than those of fluids [1].

The reported breakthrough in substantially increasing

the thermal conductivity of fluids by adding very small

amounts of suspended metallic or metallic oxide nano-

particles (Cu, CuO, Al2O3) to the fluid [1,2], or alterna-

tively using nano-tube suspensions [3,4] is intriguing.

The latter is important not only because of the face value
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of its possibility to direct implementation in technologi-

cal applications but also because both results clearly con-

flict with theoretical anticipations based on existing

theories and models (see discussion on the conflict be-

tween theory and experiments in Choi et al. [3]). These re-

sults, if independently confirmed, open two distinct

avenues of opportunities: (a) Their direct application to

different technologies in improving substantially the

operating efficiencies and reducing both operating as well

as capital production costs. Better efficiency allows for

lower pumping power and less heat transfer area, hence

saving in both operating as well as fixed costs. Better effi-

ciency also minimizes the adverse impact that energy-

producing technologies have on the environment, i.e. less

pollutants per kWatt generated. (b) By discovering the

correct mechanism and theory that underlies this phe-

nomenon may extend design options in developing

processes and devices that apply these mechanisms,

hence opening the door to yet unknown and limitless
ed.
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Nomenclature

a
*

radius of the platinum wire

c
*

wave speed, equals
ffiffiffiffiffiffiffiffiffiffiffi
a�=s�

p
d
*

depth of the platinum strip

Fo Fourier number, equals a�s�=L2�
i electrical current

k
*

effective thermal conductivity of the suspen-

sion

l
*

length of the platinum wire/strip

L
*

gap distance between the walls of a slab

q
*

heat flux

qL� horizontal heat flux on the boundary of the

platinum strip, at x
*
= L

*

_ql� rate of heat generated by Joule heating

in the platinum wire per unit length of

wire

R electrical resistance, dimensional

r
*

radial variable coordinate

t
*

time

T dimensionless temperature, equals ðT ��
TC� Þk�=ðj qL� j L�Þ

TC� coldest wall temperature, dimensional

T1* temperature measured at time t*1

T2* temperature measured at time t*2

V voltage across the platinum wire/strip,

dimensional

x horizontal variable co-ordinate

Greek symbols

a
*

effective thermal diffusivity of the suspen-

sion

s
*

relaxation time in hyperbolic thermal con-

duction

Subscripts

* dimensional values

cr critical values
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possibilities of new processes and devices that use heat

transfer.

We have redrawn the results reported by Eastman

et al. [1] for a ‘‘suspended nano-particles’’ system and

we present them in Fig. 1a where two major deductions

can be made: (a) The impact of the copper nano-particles

(that the authors, Eastman et al. [1] succeeded to keep

stable in the suspension due to the particular technique

they used to manufacture them) on the effective thermal

conductivity of the suspension is unexpectedly high. A

very small amount (less than 1% in terms of volume frac-

tion) of copper nano-particles can improve the thermal

conductivity of the suspension by 40%. (b) Even metal-

oxides at small quantities (4% in terms of volume frac-

tion) can produce a substantial increase of about 20%

in the effective thermal conductivity of the suspension.

The experimental results reported by Choi et al. [3] of

multiwalled carbon nano-tubes suspended in oil were re-

drawn and are presented in Fig. 1b. An even more

impressive improvement of the effective thermal conduc-

tivity is detected. Over 150% improvement of the effec-

tive thermal conductivity (a factor of 2.5 higher

thermal conductivity) at a volume fraction of 1% is

indeed spectacular.

Moreover, Choi et al. [3] compared their results with

existing theories, some of them going back to the start of

the last century, e.g. [5–11]. The reported experimental

results are by one order of magnitude greater than the

predictions based on existing theories and models.

More recent approaches [12] also cannot explain this

discrepancy.
On the other hand, a reduction in the effective thermal

conductivity of the nano-particle-host medium is antici-

pated by existing theories for length scales smaller than

the phonon mean free path in the host material [13,14].

There is a clear and appealing need to settle the conflict

between the recent experimental results and the theories

or models. Possible explanations for the divergence be-

tween theory and experiments were suggested and ex-

plored very basically by Keblinski et al. [15]. Brownian

motion of the particles, molecular-level layering of the li-

quid at the liquid/particle interface, the nature of heat

transport within the nano-particles and effects of nano-

particle clustering were investigated. While these investi-

gations were not done in detail but mainly at the very

basic level, Keblinski et al. [15] show that the ‘‘key factors

in understanding thermal properties of nano-fluids are the

ballistic, rather than diffusive, nature of heat transport in

the nano-particles, combined with direct or fluid medi-

ated clustering effects that provide paths for rapid heat

transport’’. If this conclusion is correct then the experi-

mental results obtained at the macro-system level reflect

the wave effects impact on the macro-system behavior

rather than the diffusion mechanism. It implies that Fou-

rier Law (representing the diffusion mechanism) is not

valid even at the macro-system level when nano-elements

are suspended in the fluid. The immediate conclusion

from the latter deduction is that the transient hot wire

method (THW) that was used by Eastman et al. [1],

Lee et al. [2] and Choi et al. [3] to measure the nano-fluid

suspension�s effective thermal conductivity is not appro-

priate because it uses the Fourier Law of heat conduction



Fig. 1. Thermal conductivity enhancement in systems consist-

ing of (a) nano-particles suspended in ethylene glycol as

reported by Eastman et al. [1] and (b) multiwalled carbon

nano-tubes suspended in oil, as reported by Choi et al. [3] (here

redrawn from published data).
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as its fundamental principle for estimating the thermal

conductivity [16,17]. Eastman et al. [1] indicate the way

the thermal conductivity is being evaluated by using Fou-

rier Law in the transient hot wire method (THW). There-

fore, based on this simple logic the excessive values of

effective thermal conductivity calculated based on the

experimental data might need a correction to account

for deviations from Fourier Law. Still the question of

why this apparent substantial heat flux enhancement oc-

curred was not yet addressed. The mechanisms suggested

by Keblinski et al. (2002) are all possible. However, the

way these nano or molecular level mechanisms are being

lumped into such an impressive effect at the macro-sys-

tem level is not yet known, nor proposed by Keblinski

et al. [15]. Recent research results presented by Xue
et al. [18] eliminate the molecular-level layering of the

liquid at the liquid/particle interface as a possible heat

transfer enhancement mechanism. The authors [18] con-

clude that ‘‘the experimentally observed large enhance-

ment of thermal conductivity in suspensions of solid

nano-size particles (nano-fluids) can not be explained

by altered thermal transport properties of the layered

liquid’’. While the reported results are a direct

consequence of the presence of nano-elements in the sus-

pension, the measurements were not performed at the

nano-scale, but rather at the macro/meso-scale. As a re-

sult the interest should be focused not only on what oc-

curs at the nano-scale but rather on how the heat

transfer at the macro/meso-scale is substantially affected

by a very small presence (less than 1% in volume) of an

extremely small concentration of suspended elements

(nano-elements).

There are in our view about six possible reasons for

the anomalously increased effective thermal conductiv-

ity, which can be classified as follows:

(i) Hyperbolic [19–22]) or Dual-phase-lagging [23–

26]) thermal wave effects not accounted for in

using the THW data processing combined with

extremely high values of the time lag s
*
due to

the heterogeneous mixture (see [25,26]).

(ii) Thermal resonance due to hyperbolic thermal

waves combined with an amplified periodic signal

possibly from short-radio-waves or cellular

phones (1.9 GHz, 800 MHz frequencies) (see [27]).

(iii) Particle driven, or thermally driven, natural

convection.

(iv) Convection induced by electro-phoresis.

(v) Hyperbolic thermal natural convection.

(vi) Any combination of the above.

The first particular possibility that needs exploration

is that the nano/molecular level wave effects at the nano-

elements� interface make the hyperbolic (wave) heat

transfer effects at the macro-level significant. Then, a

corresponding correction of converting the experimental

data into the effective thermal conductivity results needs

to be introduced. The latter forms the objective of the

present investigation in terms of introducing the hyper-

bolic thermal wave corrections based on Cattaneo [19]

and Vernotte [20–22] constitutive relationship for heat

conduction and checking whether such effects may have

been the reason behind the excessive effective thermal

conductivity results in nano-fluid suspensions.
2. Experimental methods for thermal conductivity

estimation

The transient hot wire (THW) method for estimating

experimentally the thermal conductivity of solids [28]



Fig. 2. A Wheatstone bridge used to measure the electrical

resistance of the platinum wire/strip as applicable in the

transient hot-wire/transient hot-strip methods of estimation of

thermal conductivity.
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and fluids [29–31] established itself as the most accurate,

reliable and robust technique [32]. It replaced the steady

state methods primarily because of the difficulty to

determine that steady state conditions have indeed been

established and for fluids the difficulty in preventing the

occurrence of natural convection and consequently the

difficulty in eliminating the natural convection effects

on the heat flux. The method consists in principle of

determining the thermal conductivity of a selected mate-

rial/fluid by observing the rate at which the temperature

of a very thin platinum wire (5–80 lm) increases with

time after a step change in voltage has been applied to

it. The platinum wire is embedded vertically in the se-

lected material/fluid and serves as a heat source as well

as a thermometer, as presented schematically in Fig. 2.

The temperature of the platinum wire is established by

measuring its electrical resistance, the latter being re-

lated to the temperature via a well-known relationship.

A Wheatstone bridge is used to measure the electrical

resistance Rw of the platinum wire (see Fig. 2). The elec-

trical resistance of the potentiometer R3 is adjusted until

the reading of the galvanometer G shows zero current.

When the bridge is balanced as indicated by a zero cur-

rent reading on the galvanometer G, the value of Rw can

be established from the known electrical resistances R1,

R2 and R3 by using the balanced Wheatstone bridge

relationship Rw = R1R3/R2. Because of the very small

diameter (micrometer size) and high thermal conductiv-

ity of the platinum wire the latter can be regarded as a
line source in an otherwise infinite cylindrical medium.

The rate of heat generated per unit length (l
*
) of plati-

num wire is therefore _ql� ¼ iV =l� [W/m], where i is the

electric current flowing through the wire and V is the

voltage drop across the wire. Solving for the radial heat

conduction due to this line heat source leads to a tem-

perature solution in the following closed form that can

be expanded in an infinite series as follows:

T � ¼
_ql�

4pk�
Ei

r2�
4a�t�

� �

¼ _ql�
4pk�

�cþ ln
4a�t�
r2�

� �
þ r2�
4a�t�

�

� r4�
64a2�t

2
�
þ r6�
1152a3�t

3
�
� � � �

�
ð1Þ

where Ei(Æ) represents the exponential integral function,

and c = ln(r) = 0.5772156649 is Euler�s constant. For a

line heat source embedded in a cylindrical cell of infinite

radial extent and filled with the test fluid one can use the

approximation r2�=4a�t� � 1 in Eq. (1) to truncate the

infinite series and yield

T � �
_ql�

4pk�
�cþ ln

4a�t�
r2�

� �
þO

r2�
4a�t�

� �� �
ð2Þ

Eq. (2) reveals a linear relationship, on a logarithmic

time scale, between the temperature and time. For

r
*
= a

*
, a

*
being the radius of the platinum wire, the con-

dition for the series truncation r2�=4a�t� � 1 can be ex-

pressed in the following equivalent form that provides

the validity condition of the approximation in the form

t� �
a2�
4a�

ð3Þ

For any two temperature readings T1* and T2* recorded

at the times t1* and t2* respectively the temperature dif-

ference (T2* � T1*) can be approximated by using Eq.

(2) in the form

ðT 2� � T 1� Þ �
iV

4pk�l�
ln

t2�

t1�

� �� �
ð4Þ

where we replaced the heat source with its explicit

dependence on the i, V and l
*
, i.e. _ql� ¼ iV =l�. From

Eq. (4) one can express the thermal conductivity k
*

explicitly in the form

k� �
iV

4pðT 2� � T 1� Þl�
ln

t2�

t1�

� �� �
ð5Þ

Eq. (5) is a very accurate way of estimating the thermal

conductivity as long as the validity conditions for appro-

priateness of the problem derivations used above are ful-

filled. A finite length of the platinum wire, the finite size

of the cylindrical container, the heat capacity of the plat-

inum wire, and possibly natural convection effects are

examples of possible deviations of any realistic system

from the one used in deriving Eq. (5). De Groot et al.



x=x* /L* 

L* 

q*=qL*  

q=qL=-1 

T*=TC 

T=0 

x=0 x=1

x*=0 x*=L* 

Fig. 3. Problem formulation of the heat conduction in a slab

subject to constant heat flux on one wall and constant

temperature on the other wall.
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[29], Healy et al. [30] and Kestin and Wakeham [31]

introduce an assessment of these deviations and possible

corrections to the THW readings to improve the accu-

racy of the results. In general all the deviations indicated

above could be eliminated via the proposed corrections

provided the validity condition listed in Eq. (3) is en-

forced as well as an additional condition that ensures

that natural convection is absent. The validity condition

(3) implies the application of Eq. (5) for long times only.

However, when evaluating this condition (3) to data

used in the nano-fluids suspensions experiments consid-

ered in this paper one obtains explicitly the following

values. For a 76.2 lm diameter of platinum wire used

by Eastman et al. [1], Lee et al. [2]), Choi et al. [3], the

wire radius is a
*
= 3.81 · 10�5 m leading to a2�=4a� ¼

3:9 ms for ethylene glycol and a2�=4a� ¼ 4:2 ms for oil,

producing the explicit validity condition t
*
� 3.9 ms

for ethylene glycol and t
*
� 4.2 ms for oil. The long

times beyond which the solution (5) can be used reliably

are therefore of the order of a tens of milliseconds, not

so long in the actual practical sense. On the other hand

the experimental time range is limited from above as well

in order to ensure the lack of natural convection that

develops at longer time scales. Xuan and Li [4] estimate

this upper limit for the time that an experiment may last

before natural convection develops as about 5 s. They

indicate that ‘‘An experiment lasts about 5 s. If the time

is longer, the temperature difference between the hot-

wire and the sample fluid increases and free convection

takes place, which may result in errors’’. Lee et al. [2]

while using the THW method and providing experimen-

tal data in the time range of 1–10 s, indicate in their Fig.

3 the ‘‘valid range of data reduction’’ to be between 3 s

and 6 s. Our estimations evaluated above confirm these

lower limits as a very safe constraint and we assume that

the upper limits listed by Xuan and Li [4] and Lee et al.

[2] are also good estimates, leading to the validity condi-

tion of the experimental results to be within the follow-

ing estimated time range of 0.03 s < t
*
< 5 s. The valid

range for data reduction used by Lee et al. [2], i.e.

3 s < t
*
< 6 s should also be satisfactory. Within this

time range the experimental results should produce a lin-

ear relationship, on a logarithmic time scale, between the

temperature and time.

While the application of the method to solids and

gases is straightforward its corresponding application

to electrically conducting liquids needs further attention.

The experiments conducted in nano-fluids suspensions

listed above used a thin electrical insulation coating

layer to cover the platinum wire instead of using the bare

metallic wire, a technique developed by Nagasaka and

Nagashima [33]. The latter is aimed at preventing prob-

lems such as electrical current flow through the liquid

causing ambiguity of the heat generation in the wire.

A transient hot strip (THS) method using a rectangu-

lar geometry was developed as an equivalent alternative
to the transient hot wire (THW) method that applies to

a cylindrical geometry. The transient hot strip (THS)

method uses a very thin metal foil instead of the hot wire

to undertake identical functions as presented in a review

by Gustafsson [34]. It applies therefore to a rectangular

geometry and its accuracy, uncertainty, advantages and

disadvantages as compared to the THW method were

presented by Hammerschmidt and Sabuga [32].
3. Problem formulation and thermal wave effects

The present investigation focuses on thermal wave ef-

fects via the constitutive model suggested by Cattaneo

[19] and Vernotte [20–22] and the possible deviation of

the experimental results due to these effects from the ex-

pected Fourier conduction. To investigate preliminary

the possibility that thermal wave effects might have

been the cause of the apparently spectacular enhance-

ment of the effective thermal conductivity of the suspen-

sion we consider the thermal conduction in a rectangular

geometry due to a plane heat source (see Fig. 3) via the

hyperbolic heat conduction formulation as well as via a

Fourier heat conduction formulation and compare the

two. The rectangular geometry used here applies to a

transient hot strip method of evaluation of the thermal

conductivity and the comparison applies to deviations
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between Fourier to hyperbolic thermal conduction as

applicable to the THS method and the required correc-

tions in accounting for the latter deviations.

Consider the slab as described in Fig. 3 subject to a

constant heat flux on its right wall qL� , representing

the heat flux from the hot strip to the fluid due to the

uniform Joule heating generated in the thin hot strip

by the electric current, and a constant cold temperature

TC on the left wall. The hyperbolic conduction phenom-

enon is governed by the constitutive relationship

between the heat flux and temperature gradient in the

form

s�
oq�
ot�

þ q� ¼ �k�r�T � ð6Þ

where s
*
is the relaxation time and a

*
is the thermal dif-

fusivity, leading to the hyperbolic heat conduction

equation

1

c2�

o2T �

ot2�
þ 1

a�

oT �

ot�
¼ r2

�T � ð7Þ

where c� ¼
ffiffiffiffiffiffiffiffiffiffiffi
a�=s�

p
is the wave speed. Eqs. (6) and (7)

may be transferred into a dimensionless form by intro-

ducing the following scales L
*
, L2

�=a�, j qL� j, j qL� j
L�=k� for the space variable, time variable, heat flux

and temperature difference, respectively. This leads to

the following definitions of the dimensionless variables

x ¼ x�
L�

; t ¼ a�t�
L2
�
; q ¼ q�

j qL� j
; T ¼ ðT � � T C� Þk�

j qL� j L�

ð8Þ

that transform Eqs. (6) and (7) into their corresponding

dimensionless form

Fo
oq

ot
þ q ¼ �krT ð9Þ

Fo
o2T
ot2

þ oT
ot

¼ r2T ð10Þ

where Fo ¼ a�s�=L2
� is the Fourier number. For the one-

dimensional slab considered here Eqs. (9) and (10) take

the form

Fo
oq

ot
þ q ¼ �k

oT
ox

ð11Þ

Fo
o2T
ot2

þ oT
ot

¼ o2T
ox2

ð12Þ

The analysis and investigation of Eq. (12) was exten-

sively covered in excellent papers and reviews, such as

Özisik and Tzou [35], Haji-Sheikh et al. [36], Wang

[37], Frankel et al. [38], and Vick and Özisik [39], to

name only a few. The solution to Eq. (12) subject to

the boundary and initial conditions considered in this

paper that are expressed in the following dimensionless

form
x ¼ 0 : T ¼ 0

x ¼ 1 : qL ¼ �1 ! ðoT=oxÞx¼1 ¼ 1
ð13Þ

t ¼ 0 :
T ¼ T 0 ¼ const:

_T ¼ _T 0 ¼ const:

�
ð14Þ

is expressed in terms of orthogonal eigenfunctions in the

form

T ¼ xþ ekct
XM0

n¼0

Anek1snt þ Bnek2snt
� �

sin
2nþ 1ð Þp

2
x

� �

þ An;cr þ Bn;crt½ �ekc t sin 2ncr þ 1ð Þp
2

x
� �

dncr;j

þ ekc t
X1
n¼M1

An

2
cos

2nþ 1ð Þp
2

x� kint
� ���

� cos
2nþ 1ð Þp

2
xþ kint

� ��

þ Bn

2
sin

2nþ 1ð Þp
2

x� kint
� ��

þ sin
2nþ 1ð Þp

2
xþ kint

� ��	
ð15Þ

where

k1n ¼ kc þ k1sn; k2n ¼ kc þ k2sn;

kc ¼ � 1

2Fo
8n < ncr ð16aÞ

k1n;cr ¼ k2n;cr ¼ kc ¼ � 1

2Fo
8n ¼ ncr ð16bÞ

k1n ¼ kc þ ikin; k2n ¼ kc � ikin;

kc ¼ � 1

2Fo
8n > ncr ð16cÞ

and where we introduced the notation

k1sn ¼ � 1

2Fo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2nþ 1ð Þ2p2 Fo

q
;

k2sn ¼
1

2Fo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2nþ 1ð Þ2p2 Fo

q
8n < ncr

ð17aÞ

Dk ¼ 1

Fo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2nþ 1ð Þ2p2 Fo

q
8n < ncr ð17bÞ

kin ¼
1

2Fo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ2p2 Fo� 1

q
8n > ncr ð17cÞ

while the critical value of n, i.e. ncr, was evaluated and

can be expressed in the form

ncr ¼
1

2

1

p
ffiffiffiffiffi
Fo

p � 1

� �
ð18Þ

For initial conditions consistent with an initial perma-

nent constant temperature identical to that of the envi-

ronment, i.e. to T C� , the dimensionless values of the

initial conditions are T0 = 0, _T 0 ¼ 0, leading to the fol-

lowing expressions for the coefficients in the series (15)
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An ¼
2k2nI1n
Dk

; Bn ¼ � 2k1nI1n
Dk

8n < ncr ð19aÞ

An;cr ¼ 2I1n;cr; Bn ¼ �2kcI1n;cr 8n ¼ ncr ð19bÞ

An ¼ � 2kc
kin

I1n; Bn ¼ 2I1n 8n > ncr ð19cÞ

where I1n = �4(�1)n/(2n + 1)2p2. The infinite series in

Eq. (15) consists of three separate contributions dictated

by the values of M0 and M1 defined by

M0 ¼ bncrc � dncr ;j

¼
ðncr � 1Þ 8ncr ¼ j; j ¼ 0; 1; 2; 3; . . .

bncrc 8ncr 6¼ j; j ¼ 0; 1; 2; 3; . . .

(
ð20Þ

M1 ¼ bncrc þ 1

¼
ncr þ 1ð Þ 8ncr ¼ j; j ¼ 0; 1; 2; 3; . . .

M0 þ 1ð Þ 8ncr 6¼ j; j ¼ 0; 1; 2; 3; . . .

(
ð21Þ

where dncr ;j is the Kronecker delta function defined in the

form

dncr ;j ¼
1 8ncr ¼ j; j ¼ 0; 1; 2; 3; . . .

0 8ncr 6¼ j; j ¼ 0; 1; 2; 3; . . .

�
ð22Þ

and bncrc is the inclusive floor function representing the

largest integer less than or equal to ncr. Therefore M0

is the exclusive floor function representing the largest

integer less than ncr. The first contribution is a finite ser-

ies for the terms corresponding to values of 0 < n < ncr.

When ncr = 0 corresponding to Fo = 1/p2 this contribu-

tion is absent. The second contribution is the critical

term which is present only if ncr is a non-negative inte-

ger. This critical term is absent when ncr is not a non-

negative integer, or if Fo > 1/p2. The third contribution

is an infinite series representing traveling waves that

formed via a cascade of frequencies over a wide range

of scales. This contribution is present at all times how-

ever it may become significantly small if ncr � 1.

Our primary interest is the temperature value at

x = 1, or dimensionally at x
*
= L

*
, i.e. TL. The latter is

obtained by substituting x = 1 into the solution (15)

leading to

T L ¼ 1þ ekc t
XM0

n¼0

ðanek1snt þ bnek2sntÞ þ ðan;cr þ bn;crtÞdncr ;j

"

þ
X1
n¼M1

½an sinðkintÞ þ bn cosðkintÞ�
#

ð23Þ

where the coefficients are defined as follows

an ¼ ð�1ÞnAn ¼
�8k2n

ð2nþ 1Þ2p2Dk
;

bn ¼ ð�1ÞnBn ¼
8k1n

ð2nþ 1Þ2p2Dk
8n < ncr ð24aÞ
an;cr ¼ ð�1ÞncrAn;cr ¼
�8

ð2nþ 1Þ2p2
;

bn;cr ¼ ð�1ÞncrBn;cr ¼
8kc

ð2nþ 1Þ2p2
8n ¼ ncr ð24bÞ

an ¼ ð�1ÞnAn ¼
8kc

ð2nþ 1Þ2p2kin
;

bn ¼ ð�1ÞnBn ¼
�8

ð2nþ 1Þ2p2
8n > ncr ð24cÞ

Therefore the temperature TL(t) at x = 1, or dimension-

ally at x
*
= L

*
, can be presented following Eq. (23) in the

following form

T LðtÞ ¼
½T L� ðtÞ � T C� �k�

j qL� j L�
¼ 1þ hðtÞ ð25Þ

where

hðtÞ ¼ ekct
XM0

n¼0

ðanek1snt þ bnek2sntÞ þ ðan;cr þ bn;crtÞdncr;j

"

þ
X1
n¼M1

½an sinðkintÞ þ bn cosðkintÞ�
#

ð26Þ

which produces the following dimensional solution

½T L� ðtÞ � T C� � ¼ j qL� j L�

k�
½1þ hðtÞ� ð27Þ
4. Analytical estimation of corrections to experimental

data

In order to derive the deviations from the Fourier to

the hyperbolic thermal conduction solutions and evalu-

ate the required corrections we present the corresponding

Fourier solution to the same problem of the slab pre-

sented in Fig. 3 subject to a constant heat flux on its right

wall qL� , representing the heat flux to the fluid due to the

uniform Joule heating generated in the thin hot strip by

the electric current, and a constant cold temperature

T C� on the left wall. The Fourier solution is presented

also in terms of orthogonal eigen functions in the form

T ¼ xþ
X1
n¼0

An exp �ð2nþ 1Þ2p2

4
t

" #
sin

ð2nþ 1Þp
2

x
� �

ð28Þ

leading to the following solution for the temperature

TL(t) at x = 1,

½T L� ðtÞ � T C� � ¼ j qL� j L�

k�
½1þ f ðtÞ� ð29Þ

where

f ðtÞ ¼
X1
n¼0

ð�1ÞnAn exp �ð2nþ 1Þ2p2

4
t

" #
ð30Þ
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and for initial conditions of T0 = 0 the values of An are

evaluated and expressed in the form

ð�1ÞnAn ¼ � 8

ð2nþ 1Þ2p2
ð31Þ

which following substitution into Eq. (30) yields

f ðtÞ ¼
X1
n¼0

� 8

ð2nþ 1Þ2p2
exp �ð2nþ 1Þ2p2

4
t

" #
ð32Þ

When evaluating the thermal conductivity by applying

the transient hot strip method and using the Fourier

Law one obtains from Eq. (29)

k� ¼
j qL� j L�

½T L� ðtÞ � T C� � ½1þ f ðtÞ� ð33Þ

where the temperature difference ½T L� ðtÞ � T C� � is repre-
sented by the recorded experimental data and the value

of the wall heat flux jqLj is evaluated from the Joule

heating of the hot strip in the form j qL j¼ iV =A�strip ,

where A�strip ¼ d�l� is the heat transfer area of the hot

strip, with l
*
being the length of the strip and d

*
the

depth of the hot strip.

We apply now a method of synthetic experimental

emulation data (SEED) to evaluate the deviation be-

tween Fourier and hyperbolic thermal conduction.

According to the SEED method we assume that the data

expressed by ½T L� ðtÞ � T C� � represent a different than

Fourier conduction solution, in this case a hyperbolic

thermal conduction solution. Then we substitute in Eq.

(33) the values of ½T L� ðtÞ � T C� � obtained from the hyper-

bolic solution expressed by Eqs. (27) and (26) to yield

kapp
kact

¼ ½1þ f ðtÞ�
½1þ hðtÞ� ð34Þ

where kapp is the apparent thermal conductivity ob-

tained from the Fourier conduction solution while kact
is the actual thermal conductivity that corresponds to

data that follow the hyperbolic conduction, and where

f(t) can be evaluated from Eq. (32) while h(t) is evaluated

from Eq. (26). The ratio between the two will provide

the deviation of the apparent thermal conductivity from

the actual one.
5. Results and discussion

Despite the fact that the present paper focuses on

transient hot strip results because of the rectangular

geometry used we attempted to select dimensional values

that are of the same equivalent values as the ones used in

the experimental setup of Eastman et al. [1], Lee et al. [2]

for metals and metal-oxides suspended in ethylene gly-

col, or alternatively for nano-tube suspensions in oil

used by Choi et al. [3]. Eq. (34) can be evaluated as a
function of time for any given value of Fourier number,

Fo. The dependence of the results on the Fourier num-

ber is established due to the dependence of the hyper-

bolic eigenvalues on Fo which are needed in the

evaluation of h(t). Other than that the thermal conduc-

tivity ratio depends only on the dimensionless time. To

convert the latter and express it in terms of the dimen-

sional values of time we use the scaling definition intro-

duced by Eq. (8) in the form t� ¼ ðL2
�=a�Þt. We use a

value of L
*
= 0.025 m which is equivalent to the radius

of the cylindrical container used by Eastman et al. [1],

Lee et al. [2] and Choi et al. [3], and two different values

of thermal diffusivity a
*
corresponding to ethylene glycol

and oil, respectively, i.e. for ethylene glycol aeg� ¼
0:939� 10�7 m2/s while for oil aoil� ¼ 0:87� 10�7 m2/s.

Consequently the time conversion from dimensionless

to dimensional follows the following factoring t
*
=

6.656 · 103t s for ethylene glycol, and t
*
= 7.184 ·

103t s for oil.

The evaluated dimensionless wall temperature at

x
*
= L

*
which represents the hot-wire/strip temperature

was evaluated for data corresponding to ethylene glycol

and a Fourier number of Fo = 0.001 following both the

Fourier as well as the hyperbolic solutions presented by

Eqs. (29) and (25), respectively. The results are presented

in Fig. 4(a) on a logarithmic time scale and within the

time range of between 3 s and 6 s, the latter being iden-

tified by Lee et al. [2] as the ‘‘valid range for data reduc-

tion’’. From Fig. 4(a) it is evident that within this time

range both Fourier as well as the hyperbolic wall tem-

perature solutions are approximately linear in time on

a logarithmic time scale. Therefore this linearity cannot

confirm the validity of either one of the models as the

correct one. The results of the ratio between the ‘‘appar-

ent’’ and ‘‘actual’’ thermal conductivities corresponding

to data of ethylene glycol and a Fourier number of

Fo = 0.001 are presented in Fig. 4(b) where two slightly

different time ranges are identified. The experimental

time frame used by Lee et al. [2] of 3 s < t
*
< 6 s reveals

that the thermal conductivity ratio varies between kapp/

kact = 1.46 and kapp/kact = 1.85. Our own estimation of

the valid experimental time frame that is consistent with

Xuan and Li [4] as well as with Healy et al. [30] corre-

sponds to 100 ms < t
*
< 5 s. Within this time frame the

thermal conductivity ratio varies between kapp/kact =

1.55 and substantially higher than kapp/kact = 5. To

investigate the effect of a small Fourier number we eval-

uated the thermal conductivity ratio of ethylene glycol

for Fo = 10�4 and the results are presented in Fig. 5.

For an experimental time frame of 100 ms < t
*
< 5 s.

Fig. 5 reveals a variation of the thermal conductivity

ratio between kapp/kact = 1.04 and substantially higher

than kapp/kact = 1.8. A larger value of Fourier number,

i.e. Fo = 0.01, with ethylene glycol leads to the results

presented in Fig. 6 identifying a variation of the thermal



Fig. 4. Comparison between the Fourier and hyperbolic

solutions corresponding to properties of ethylene glycol and a

Fourier number of Fo = 0.001. (a) Hot strip dimensionless

temperature within the time range 3 s < t
*
< 6 s and (b) thermal

conductivity ratio (kapp/kact).

Fig. 5. Thermal conductivity ratio (kapp/kact) from the Fourier

and hyperbolic solutions corresponding to properties of ethyl-

ene glycol and a Fourier number of Fo = 10�4.

Fig. 6. Thermal conductivity ratio (kapp/kact) from the Fourier

and hyperbolic solutions corresponding to properties of ethyl-

ene glycol and a Fourier number of Fo = 0.01.
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conductivity ratio between kapp/kact = 4.1 and substan-

tially higher than kapp/kact = 14. Similar results

corresponding to properties of oil such as the carbon

nano-tubes suspensions in oil used by Choi et al. [3]

are presented in Figs. 7–9. The results presented in

Fig. 7 corresponding to Fo = 0.001 show a thermal con-

ductivity ratio variation of between kapp/kact = 1.59 and

substantially beyond kapp/kact = 5. For a smaller Fourier

number, i.e. Fo = 10�4 presented in Fig. 8, the variation

of the thermal conductivity ratio lies between kapp/

kact = 1.04 and way beyond kapp/kact = 1.8. Finally Fig.

9 presents results consistent with Fo = 0.01 identifying

a thermal conductivity ratio variation of between kapp/

kact = 4.3 and far beyond kapp/kact = 14.
To summarize, the computed analytical results show

that the apparent thermal conductivity evaluated via the

Fourier conduction constitutive relationship could in-

deed produce results that show substantial apparent

enhancement of the effective thermal conductivity of

the nano-fluid suspension if the actual conduction pro-

cess is governed by a hyperbolic thermal conduction

process.



Fig. 7. Thermal conductivity ratio (kapp/kact) from the Fourier

and hyperbolic solutions corresponding to properties of oil and

a Fourier number of Fo = 0.001.

Fig. 8. Thermal conductivity ratio (kapp/kact) from the Fourier

and hyperbolic solutions corresponding to properties of oil and

a Fourier number of Fo = 10�4.

Fig. 9. Thermal conductivity ratio (kapp/kact) from the Fourier

and hyperbolic solutions corresponding to properties of oil and

a Fourier number of Fo = 0.01.
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6. Conclusions

The impressive heat transfer enhancement revealed

experimentally in nano-fluids suspensions was investi-

gated theoretically by applying the hyperbolic heat con-

duction constitutive relationship and comparing it to the

corresponding Fourier conduction results. It is demon-

strated that hyperbolic heat conduction could have been

the source of the excessively high effective thermal con-

ductivity of the suspension and therefore providing a
viable explanation of the anomalous thermal conductiv-

ity enhancement. Nevertheless, the investigation of alter-

native possibilities is needed prior to reaching an

ultimate conclusion.
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[39] B. Vick, M.N. Özisik, Growth and decay of a thermal

pulse predicted by the hyperbolic heat conduction equa-

tion, J. Heat Transfer 105 (1983) 902–907.


	Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations
	Introduction
	Experimental methods for thermal conductivity estimation
	Problem formulation and thermal wave effects
	Analytical estimation of corrections to experimental data
	Results and discussion
	Conclusions
	Acknowledgment
	References


